Blind Source Separation of Real World Signals
نویسندگان
چکیده
We present a method to separate and deconvolve sources which have been recorded in real environments. The use of noncausal FIR filters allows us to deal with nonminimum mixing systems. The learning rules can be derived from different viewpoints such as information maximization, maximum likelihood and negentropy which result in similar rules for the weight update. We transform the learning rule into the frequency domain where the convolution and deconvolution property becomes a multiplication and division operation. In particular, the FIR polynomial algebra techniques as used by Lambert present an efficient tool to solve true phase inverse systems allowing a simple implementation of noncausal filters. The significance of the methods is shown by the successful separation of two voices and separating a voice that has been recorded with loud music in the background. The recognition rate of an automatic speech recognition system is increased after separating the speech signals.
منابع مشابه
Blind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملBlind Separation of Jointly Stationary Correlated Sources
The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...
متن کاملBlind Separation of Real World Audio Signals Using Overdetermined Mixtures
We discuss the advantages of using overdetermined mixtures to improve upon blind source separation algorithms that are designed to extract sound sources from acoustic mixtures. A study of the nature of room impulse responses helps us choose an adaptive lter architecture. We use ideal inverses of acquired room impulse responses to compare the eeectiveness of diierent-sized separating lter conngu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997